
Authorship Attribution: NLP
David Pogrebitskiy, Jacob Ostapenko

Northeastern University, Boston, MA, USA

April 17, 2024

Introduction

Authorship attribution, the task of identifying the author of a given text or document, holds

considerable importance across multiple domains. Whether discerning the origin of leaked

information, establishing ownership of creative works, or maintaining academic integrity by

detecting plagiarism, the ability to determine authorship is invaluable. In this project, we focused

on evaluating the efficacy of different machine learning models in author classification. Our

investigation not only sheds light on model performance but also contributes to the

understanding of document embeddings and model hyperparameters.

Related Work

Authorship identification has been approached from various angles in the literature. Abbasi et al.

(2022) employed ensemble learning techniques in their study of authorship identification. Their

work utilized TFIDF (Term Frequency-Inverse Document Frequency) as a feature representation

method, coupled with ensemble learning algorithms. By combining multiple base classifiers,

ensemble learning enhances predictive performance and robustness. This approach demonstrated

the effectiveness of ensemble methods in authorship identification tasks, providing valuable

insights into alternative methodologies. This gave us the inspiration to try other features

representations for the same task.

Methods

Data Acquisition and Pre-processing

We chose a dataset from Kaggle, named “All the news”; it was put together using news articles

from 15 publishers (Thompson 2017). It contains 143,000 articles, belonging to 15,000 authors.

Relevant information in one entry contains a publisher, the author, and the full text of an article.

 As with any corpus for a NLP task, the first step was to clean the data and retain only

useful information. We removed data with missing authors or publishers and removed all stop

words to remove any ‘information-less’ words or phrases. Next, the data was filtered to only

include articles from the top 20 authors with the most articles. This was done because some

authors have many articles in the original dataset while others do not – this led to a class

imbalance that would make it very difficult to properly train and test models using this data.

Furthermore, there are a total of 15,000 authors and we don’t have the computational power to

train a model to predict from a set of 15,000 authors. Figure 1 below depicts the top 20 authors

and their corresponding number of articles.

Feature Engineering

For featurization, we explored two primary approaches: Doc2Vec and BERT. Doc2Vec, an

extension of Word2Vec, enables the generation of dense embeddings for entire documents,

leveraging neural network architectures. In contrast, BERT, equipped with a transformer

architecture, offers powerful pre-trained tokenizer and embedding capabilities, particularly adept

at capturing bi-directional context. We standardized features (embeddings) before training and

testing each model. These approaches were chosen because they provide dense vectors that

efficiently store numerical representations of each corpus. These dense vectors will then be able

to be fed into any of the models we choose.

Figure 1

Histogram visualizing number of publications per author.

Model Evaluation

We evaluated 6 different models: Logistic Regression, Random Forest, SVM, Naïve Bayes,

KNN, and Feed-Forward Neural Networks. The following section is focused on explaining each

one of these in more detail. Each of the models’ best hyperparameters can be seen in Table 1. In

each of the models, we employed SMOTE during training to provide performance improvement

and reduce the effect of class imbalance (Chawla et al. 2002).

Logistic Regression

A logistic regression model linearly combines features and their corresponding weights,

multiplies them by an activation function, and outputs probabilities of each class using a

SoftMax function. During training, there is an iterative process to update the weights of the

features correctly – during each iteration, the loss function and its gradient are calculated,

followed by the update of the feature weights. For training, a maximum iteration of 10000 was

used and RandomizedSearchCV was used to fine-tune and find the best hyperparameters.

Random Forest

A random forest model is an ensemble-learning method based on decision trees; it outputs the

most common class prediction across many individual decision trees. To train, the Random

Forest selects a random sample of training data and features (bootstrap sampling) and then grows

a decision tree for this data; this happens iteratively for an x number of decision trees which

combine to make a random forest. For training, RandomizedSearchCV was used to fine-tune and

find the best hyperparameters.

SVM

A SVM works by finding the best ‘hyperplane’ that divides the feature space into the different

classes. They use different kernel functions to find patterns and map data into higher dimensional

space where separation between classes is easier. This was optimized by maximizing the distance

between the hyperplane and nearest data points. For training, RandomizedSearchCV was used to

fine-tune and find the best hyperparameters (C value, kernel, degree, and gamma).

Naïve Bayes

A NB model use a probabilistic approach based on Bayes’ Theorem and conditional

independence between features. The model trains by estimating probabilities of

features/embeddings given a class; during prediction, the model predicts probabilities of classes

given a specific feature. We used a Gaussian Naïve Bayes model, under the assumption that the

dataset follows a Gaussian distribution.

K-Nearest Neighbors

A KNN model doesn’t require training – instead, it stores all available instances and then

classifies new instances based on their similarities to the k-nearest neighbors in the ‘training’ set.

We used RandomizedSearchCV was used to fine-tune and find the best hyperparameters

(number of neighbors, weights, algorithm, leaf size, and p).

Feed-Forward Neural Network

A FFNN model contains layers of interconnected ‘neurons’, meaning inputs flow from layer to

layer. Each layer is connected to another layer with a weighted connection and an activation

function. FFNNs use backpropagation and gradient descent to update weights and minimize loss

during training. We chose a 2 layer network with ReLU activation functions, and added

‘batchnorm’ to normalize the inputs to each layer, as well as a default dropout rate of 0.5 to

reduce overfitting. We started with one epoch and attempted increasing the number while

observing the training and validation accuracy and loss.

Table 1

Model Doc2Vec Best Hyperparameters BERT Best Hyperparameters

LR C: 100 C: 10

RF n_estimators: 500, min_samples_split: 5,

min_samples_leaf: 1, max_features: sqrt,

max_depth: None

n_estimators: 500, min_samples_split: 5,

min_samples_leaf: 1, max_features: sqrt,

max_depth: None

SVM kernel: rbf, gamma: scale, C: 100 kernel: poly, gamma: scale, degree: 4, C:

10

NB No hyperparameters to tune No hyperparameters to tune

KNN weights: distance, p: 1, n_neighbors: 7,

leaf_size: 10, algorithm: kd_tree

weights: distance, p: 1, n_neighbors: 7,

leaf_size: 10, algorithm: kd_tree

FFNN Hidden layer size=128, activation=relu,

epochs=30, lr=1e-4, dropout=0.5

Hidden layer size=128, activation=relu,

epochs=30, lr=1e-4, dropout=0.5
The best hyperparameters found for each of the models using the Doc2Vec and BERT features, respectively.

Results and Conclusions

We found that the Feed-Forward Neural Network performed the best, although marginally

compared to the SVM model and the Logistic Regression model. All these 3 models had similar

accuracy, F1, precision, and recall scores as can be seen in Table 2 and Figure 2 below. One

important thing to note is that all the models performed significantly better on data that was

tokenized and embedded using BERT, as opposed to Doc2Vec. This is likely because BERT

uses a powerful transformer model that takes into context surrounding tokens, whereas Doc2Vec

is a Neural-Network based model. Although both very powerful, BERT is also trained on

significantly more data than Doc2Vec and can be expected to produce more complicated

embeddings which capture info at a higher ability.

Error Analysis

After close examination of the errors produced by the Feed-Forward Neural Network trained on

the BERT embeddings, we concluded that some of the author categories didn’t represent

individuals, but rather larger corporations that produce publications written by various unnamed

authors. For example, articles written by Breitbart News and Associated Press were the two most

misclassified classes in the testing set. We hypothesize that because many of the articles

‘written’ by Breitbart News or Associated Press were written by different people, the model

couldn’t identify a specific linguistic style or writing pattern that could be associated with the

label.

Future Work

Going forward, we would remove these larger names from the dataset and focus on only

individuals. We would also like to diversify the data being used. Authorship attribution could be

useful for detecting plagiarism or verifying authorship of legal documents/copyrights. In this

project we looked at a dataset of news articles – in the future, we would like to extend to other

literary styles, such as academic papers and legal documents. In addition to the current models

we’ve experimented with, we could try deeper, more intricate neural network architectures like

recurrent, convolution, attention mechanisms, and other kinds of Transformer-based

Architectures. Past this, we would also like to explore text generation for specific literary styles

mentioned earlier. Author attribution can be useful in areas mentioned above, but text generation

also can be useful in many other areas, such as LLMs.

Table 2

Model Doc2Vec BERT

 Accuracy F1 Precision Recall Accuracy F1 Precision Recall

FFNN 0.640 0.638 0.661 0.640 0.816 0.819 0.827 0.816

KNN 0.376 0.383 0.455 0.376 0.660 0.662 0.705 0.660

LR 0.611 0.612 0.615 0.611 0.795 0.796 0.799 0.795

NB 0.346 0.344 0.399 0.346 0.613 0.618 0.635 0.613

RF 0.540 0.525 0.535 0.540 0.714 0.716 0.726 0.714

SVM 0.645 0.643 0.650 0.645 0.813 0.813 0.815 0.813
The model performance for both types on both types of training features.

Figure 2

This figure shows the F1 scores of each of the model on Doc2Vec and BERT features, respectively.

References

Abbasi, A., Javed, A.R., Iqbal, F. et al. Authorship identification using ensemble learning. Sci

Rep 12, 9537 (2022). https://doi.org/10.1038/s41598-022-13690-4

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic

minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–

357. https://arxiv.org/abs/1106.1813

Thompson, A. All the news: 143,000 articles from 15 american publications.

https://www.kaggle.com/snapcrack/all-the-news (2017).

	Introduction
	Related Work
	Methods
	Data Acquisition and Pre-processing
	Feature Engineering
	Model Evaluation
	Logistic Regression
	Random Forest
	SVM
	Naïve Bayes
	K-Nearest Neighbors
	Feed-Forward Neural Network

	Results and Conclusions
	Error Analysis
	Future Work

	References

